
Syntax-Elements for Smalltalk

Feb. 24. 2009

A Scratch-like GUI for Smalltalk-80
by Jens Mönig (jens@moenig.org)

Elements is a new graphical user interface for the Smalltalk-80 programming language
inspired by MIT’s Scratch (http://scratch.mit.edu). Like Scratch, Elements offers draggable
“bricks” of code, which can be accumulated and assembled LEGO-wise into complex
programming constructs, rather than entering text through a keyboard. The Elements project
wants to find out, if and how Scratch’s design can be applied not only to educational micro-
worlds, but also to a full-fledged professional, object-oriented programming environment. As
a proof-of-concept study I’m supplying both a minimal programming environment to start
with, as well as a version of the Scratch Source Code Squeak environment which strives to be
completely malleable by means of these Elements, thereby implementing Scratch quasi in
itself.

Few pieces of software have inspired me the way Scratch has, with the possible exception of
the Smalltalk programming language and the Morphic user-interface paradigm. In fact, I have
come to love Scratch so much that I want everything to look and feel like Scratch. If such
blissful narrow-mindedness turns you off, don’t even bother reading any further . I also enjoy
the nerdy delight coming out of manipulating something by means of itself. By letting
Elements plug into Squeak’s compiler/decompiler structure Elements can be modified and
enhanced through itself.

The Elements Language
There are seven basic syntax elements:

The first three rectangular elements resemble variations of objects. The last three puzzle-piece
shaped elements embody sequence. The element in the middle – a closure – acts as adaptor
piece between an internal sequence and an outside object behavior.

Note that elements’ labels do not follow Smalltalk’s camel casing. Instead, all Smalltalk
expressions are automatically converted to multi-word labels and can also be user-edited as
such.

a step

an answer

a literal

a primitive

a closure

Clustering
Elements can be by combined by nesting:

and stacking:

In addition, multiple messages sent to the same receiver can also be cascaded by dropping
them onto the message which is to be evaluated last:

Elements with temporary variables and parameters feature their own local variable-palettes,
from which new variable instances can be dragged off:

Direct Interaction
Right-clicking on an element offers several choices:

“show code” translates the current element including all of its sub-elements into Smalltalk
code and pops up a dialog box displaying this code:

“show result” temporarily compiles and evaluates the current element including all of its sub-
elements and pops up a dialog box displaying the result. This menu item corresponds to the
“showIt” command in Smalltalk:

“evaluate” also compiles and executes the current element, but does not display anything. It
resembles Smalltalk’s “doIt” command, and is best used on expressions resulting in their own
visual feedback:

The Elements Window
The Elements Window is the equivalent of a Smalltalk System Browser.

It consists of three parts: The header (top left), the palette (far right) and the scripting canvas
(darker background). Method code can be browsed as elements on the scripting canvas by
selecting a class and then choosing the desired method in the header:

Notice that Smalltalk’s #ifTrue:ifFalse messages including all variants are always translated
into universal yes/no elements:

Primitive elements are followed by their fallback code:

Just looking at all the existing elements-code in the image should give the user a good
impression how to use these elements.

Creating a new Method

Creating a new Method starts by selecting an existing class in the header, and by specifying
the “side” (instance / class) for it:

The method template in the scripting canvas can then be renamed into the desired label by
right-clicking on its top region. In case one or more temporary variables are needed, templates
for these can the added to the method’s local palette also by right-clicking on the top-area:

Now the method’s code body is ready to be constructed from elements dragged out of the
palette. Pressing the “save” button compiles the element cluster into bytecode and stores it in
the image:

(Notice: You might be prompted by Squeak for your initials the first time you press the
“save” button).

Afterwards the new method can be tested using “direct interaction”:

Creating a new Class

Creating a new Class starts by selecting it’s superclass in the window header, by selecting the
“Classes” tab in the palette, right-clicking onto the classes palette and entering a name for the
new subclass:

 (in this example the superclass for the new class named
“Counter” should be “Object”)

Once a new (empty) class has been created, instance variables can be added to it, again by
selecting the “Variables” tab in the palette, and by entering one or more instance variables:

(Class variables can be added or
removed in the same way by
first selecting “class variables”
from the tab’s drop down
menu).

Afterwards methods can be added to the class which use instance/class variables:

One way to test a new class is to create a global variable:

and to again use „direct interaction“ on test-case elements:

Self Reflective

Another fun thing to try is browsing the Elements-code itself within the Elements-Window,
and finding out how it is integrated into Squeak:

Completion Status

This first version of Elements is a tentative experimental prototype, comparable to a novel’s
first draft. I’d like to use this prototype to gather experience and feedback for a more refined
and mature design, and for a better and more stable GUI. Most, if not all of Smalltalk’s
compiler nodes can be decompiled into syntax elements, with the exception of certain
Squeak-specific constructs, such as BraceNodes (Arrays within {}).

Keeping a distinct changeset for Elements turns out to be increasingly tricky when debugging
the prototype. However, I would like to eventually port these syntax elements to other
Smalltalk/Squeak versions as well (Etoys, Croquet,VisualWorks), and maybe even find yet
other ways to facilitate programming with elements in Smalltalk. Among these are ideas to
externalize and link-back image segments, but that’s another project…

Credits

Elements is completely inspired by and based in essential parts on the fantastic and brilliant
work of the MIT Media-Lab’s Scratch-team, encouraged by their willingness to share ideas,
designs, code, and enthusiasm. Thank you, John, Evelyn, Mitchel, Natalie, Andrés and Eric!

