Syntax-Elements for Smalltalk

Feb. 24. 2009

A Scratch-like GUI for Smalltalk-80
by Jens Mo6nigjéns@moenig.org

Elementss a new graphical user interface for the Sm&H88 programming language
inspired by MIT’s Scratchhtp://scratch.mit.edu Like ScratchElementoffers draggable
“bricks” of code, which can be accumulated and mded LEGO-wise into complex
programming constructs, rather than entering taxiugh a keyboard. THelementgproject
wants to find out, if and how Scratch’s design barapplied not only to educational micro-
worlds, but also to a full-fledged professionaljemi-oriented programming environment. As
a proof-of-concept study I'm supplying both a mialnprogramming environment to start
with, as well as a version of the Scratch SourceéeCoqueak environment which strives to be
completely malleable by means of th&dementsthereby implementing Scratch quasi in
itself.

Few pieces of software have inspired me the wagt8tthas, with the possible exception of
the Smalltalk programming language and the Morpkgr-interface paradigm. In fact, | have
come to love Scratch so much that | want everythangok and feel like Scratch. If such
blissful narrow-mindedness turns you off, don’t eb®ther reading any further . | also enjoy
the nerdy delight coming out of manipulating sonregtby means of itself. By letting
Element9lug into Squeak’s compiler/decompiler structdtementsan be modified and
enhanced through itself.

The Elements Language
There are seven basic syntax elements:

a literal
~ a closure

a step
[primitive a primitive
[~ an answer

The first three rectangular elements resemble tiramnis ofobjects The last three puzzle-piece
shaped elements embosigquenceThe element in the middle — a closure — actglaptar
piece between an internal sequence and an outsjeet ehavior.

Note that elements’ labels do not follow Smalltalkamel casing. Instead, all Smalltalk
expressions are automatically converted to multiWabels and can also be user-edited as
such.

Clustering
Elements can be by combined by nesting:

ey iema

and stacking:

an l:ll:lel:t A Messag

~an object

In addition, multiple messages sent to the sam&veccan also be cascaded by dropping
them onto the message which is to be evaluated last

; a Messag
an object fn, 2ssa0=

Elements with temporary variables and parametetsife their own local variable-palettes,
from which new variable instances can be draggéd of

ok wariableZ

1

rm_,_ Black variable

Direct Interaction
Right-clicking on an element offers several chaices

r .=.._ toria
show code.,)
shaow result.. '}
evaluate

“show code” translates the current element including all &iib-elements into Smalltalk
code and pops up a dialog box displaying this code:

w 10 factorial
(0] 4

“show result” temporarily compiles and evaluates the current efgrimcluding all of its sub-
elements and pops up a dialog box displaying thelt:eThis menu item corresponds to the
“showlt” command in Smalltalk:

(O T
Qs

“evaluate” also compiles and executes the current elementdrg not display anything. It
resembles Smalltalk’s “dolt” command, and is besstduion expressions resulting in their own
visual feedback:

in Shnt s Flarmant r--1-:-r-|:-h (=1
show code..

shiow result..
evaluate

The Elements Window
The Element3Vindow is the equivalent of a Smalltalk Systemiser.

% Object
instance | class Basics " Wariables
% yourself "' Messages |% Classes

It consists of three parts: The header (top Idfg,palette (far right) and the scripting canvas
(darker background). Method code can be brows&deasents on the scripting canvas by
selecting a class and then choosing the desireldatéh the header:

% Collection

instance class

Notice that Smalltalk’s #ifTrue:ifFalse messageduding all variants are always translated
into universal yes/no elements:

% Integer
instance | class

= factorial

% Mumber
instance

Just looking at all the existing elements-codénmitnage should give the user a good
impression how to use these elements.

Creating a new Method

Creating a new Method starts by selecting an exjstiass in the header, and by specifying
the “side” (instance / class) for it:

Collections k class

| Elerments Pk
Graphics #
Hostienus k
Kernel 2
Marphic R}
Metwark: Pk
Primnitives Pk
STa0 »
Systern B
Tools »

Kernel- Classes 3
Kernel- Magnitudes 3
Kernel- Methods 3
Kernel- Murmbers 3
»
»
»

Kernel- Objects
Kernel- Processes
Kernel- = Ta0 Remnants

The method template in the scripting canvas cam lbigerenamed into the desired label by
right-clicking on its top region. In case one orretemporary variables are needed, templates
for these can the added to the method’s local teadé$o by right-clicking on the top-area:

 Integer % Integer

instance instance

% Integer
u:I-:I variable.., P y— F
show code.. = add variable..,

shcui-v result. - show code..
evaluate digit sum show result..

FEMAMES..] evaluate
FENAMIE..,

Now the method’s code body is ready to be consttclfrom elements dragged out of the
palette. Pressing the “save” button compiles teeneht cluster into bytecode and stores it in
the image:

% Integer
instance class
* digit sum save .
digit sum

(Notice: You might be prompted by Squeak for youtials the first time you press the
“save” button).

Afterwards the new method can be tested using ¢tirgeraction”:

Creating a new Class

Creating a new Class starts by selecting it's stipss in the window header, by selecting the
“Classes” tab in the palette, right-clicking onbe tclasses palette and entering a name for the
new subclass:

. - . (in this example the superclass for the new atassed
| Basics " | Wariables “Counter” should be “Object")

| © Messages | - Classes

1=y}

% Gounter

instance class Basics % Wariables
S % Messages | - Classes

Cadnter
|

Once a new (empty) class has been created, instanables can be added to it, again by
selecting the “Variables” tab in the palette, agdehtering one or more instance variables:

* Counter (Class variables can be added or
instance | class Basics R ELEELTN removed in the same way by
v e LU R B first selecting “class variables”

add an instance variable.. from the tab’s drop down
I remove a '-.-'arial:ule..k menu).

Afterwards methods can be added to the class wlsehnstance/class variables:

% Counter

instance class Basics " Mariables
% walue ©' Messages |~ Classes

I nurnber

% Counter

instance class | Basics | " Wariables
T increment [Messages [* Classes

nurnber B=N nurmber

One way to test a new class is to create a glaréive:

i f Basics *" Wariables
gasics nstance = =
T Messages r clazs " Messages | Classes

- [obals .
Aurmber - add a global variable.,
remave a variable. ¥

1y

_ontrollers

Self Reflective

Another fun thing to try is browsing tiidementscode itself within thé&ElementsWindow,
and finding out how it is integrated into Squeak:

% Syntax Element Morph

instance class Basics % Mariables
“ Messages | Classes

Completion Status

This first version oElementss a tentative experimental prototype, compar#abke novel’s
first draft. I'd like to use this prototype to gathexperience and feedback for a more refined
and mature design, and for a better and more s@bleMost, if not all of Smalltalk’s
compiler nodes can be decompiled into syntax elésnernth the exception of certain
Squeak-specific constructs, such as BraceNodesygwithin {}).

Keeping a distinct changeset Blementgurns out to be increasingly tricky when debugging
the prototype. However, | would like to eventugllyrt these syntax elements to other
Smalltalk/Squeak versions as well (Etoys, Croqusti@Works), and maybe even find yet
other ways to facilitate programming with elemdantSmalltalk. Among these are ideas to
externalize and link-back image segments, butgtatbther project...

Credits

Elementds completely inspired by and based in essensiebpn the fantastic and brilliant
work of the MIT Media-Lab’s Scratch-team, encourhg their willingness to share ideas,
designs, code, and enthusiasm. Thank you, JohtyrE\Mitchel, Natalie, Andrés and Eric!

