

3.1

Brian Harvey

Jens Mönig

BYOB Reference Manual

Contents

I. Building a Block .. 3

A. Simple blocks .. 3

B. Recursion ... 6

II. First Class Lists .. 7

A. The list block .. 8

B. Lists of lists ... 9

III. Typed inputs .. 9

A. Scratch’s type notation ... 9

B. The BYOB Input Type dialog ... 10

IV. Procedures as Data ... 13

A. Procedure input types .. 13

B. Writing Higher Order Procedures .. 15

C. Procedures as Data .. 18

D. Special Forms .. 21

V. Object Oriented Programming with Sprites 23

A. First Class Sprites .. 23

B. Sending Messages to Sprites .. 24

C. Local State in Sprites: Variables and Attributes 24

D. Prototyping: Parents and Children .. 25

E. Inheritance by Delegation ... 26

F. Nesting Sprites: Anchors and Parts .. 27

G. List of attributes .. 27

VI. Building Objects Explicitly .. 28

A. Local State with Script Variables .. 28

B. Messages and Dispatch Procedures 29

C. Inheritance via Delegation .. 30

D. An Implementation of Prototyping OOP 30

VII. Miscellaneous features ... 35

3

BYOB Reference Manual
Version 3.1 DRAFT

BYOB is an extension to Scratch (http://scratch.mit.edu) that allows you to Build Your Own Blocks. It also

features first class lists, first class procedures, and first class sprites (explained below). This document is a very

terse explanation of the main features, probably not a good tutorial. It assumes that you are already familiar with

Scratch.

I. Building a Block

A. Simple blocks

In the Variables palette, at the bottom, is a button labeled “Make a block.” (A palette is one of the eight menus of

blocks you can select in the leftmost column of the BYOB window.)

Clicking this button will display a dialog window in which you choose the block’s name, shape, and palette/color.

You also decide whether the block will be available to all sprites, or only to the current sprite and its children.

Note: You can also enter the “Make a block” dialog by right-click/control-click on the script area background and

then choose “Make a block” from the menu that appears.

For the most part, there is one color per palette, e.g., all Motion blocks are blue. But the Variables palette

includes the orange variable-related blocks and the red list-related blocks. Both colors are available, along with an

“Other” option that makes grey blocks in the Variables palette for blocks that don’t fit any category.

http://scratch.mit.edu/

4

There are three block shapes, following a convention that should be familiar to Scratch users: The jigsaw-puzzle-

piece shaped blocks are Commands, and don’t report a value. The oval blocks are Reporters, and the hexagonal

blocks are Predicates, which is the technical term for reporters that report Boolean (true or false) values.

Suppose you want to make a block named “square” that draws a square. You would choose Motion, Command,

and type the word “square” into the name field. When you click OK, you enter the Block Editor. This works

just like making a script in the sprite’s scripting area, except that the “hat” block at the top, instead of saying

something like “when Sprite1 clicked,” has a picture of the block you’re building. This hat block is called the

prototype of your custom block.
1

 You drag blocks under the hat to program your custom block:

Your block appears at the bottom of the Motion palette. Here’s the block and the result of using it:

1

 This use of the word “prototype” is unrelated to the prototyping object oriented programming discussed later.

5

But suppose you want to be able to draw squares of different sizes. Control-click or right-click on the block,

choose “edit,” and the Block Editor will open. If you hover the mouse over the word “square” in the prototype in

the hat block, you’ll see two circle-plus signs appear next to it.

Click on the circle-plus on the right. You will then see the “input name” dialog:

Type in the name “size” and click OK. There are other options in this dialog; you can choose “title text” if you

want to add words to the block name, so it can have text after an input slot, like the “move () steps” block. Or

you can select a more extensive dialog with a lot of options about your input name. But we’ll leave that for later.

When you click OK, the new input appears in the block prototype:

You can now drag the orange variable down into the script, then click okay:

6

Your block now appears in the Motion palette with an input box:

You can draw any size square by entering the length of its side in the box and running the block as usual, by

double-clicking it or by putting it in a script.

At the top of the Block Editor window is a check box labeled atomic. When this box is checked, the block’s

entire script is carried out in a single BYOB execution cycle. (As in Scratch, the way multiple scripts are able to

operate more or less in parallel is that each script gets to carry out one step (one loop iteration, generally) and then

each script gets another turn.) The advantage of atomicity is that the script runs faster. The disadvantage is that

if the script draws a picture, or does a dance, the user won’t see the individual steps happen but will instead see a

longish pause followed by the appearance of the complete picture at once, or the last step of the dance. (You can

make atomic custom blocks run non-atomically temporarily by holding down the ESC key.) The default is that

the box is checked for reporter blocks, but not for command blocks.

B. Recursion

Since the new custom block appears in its palette as soon as you start editing it, you can write recursive blocks

(blocks that call themselves) by dragging the block into its own definition:

If recursion is new to you, here are a few brief hints: It’s crucial that the recursion have a base case, that is, some

small(est) case that the block can handle without using recursion. In this case, it’s the case depth=0, for which the

block does nothing at all, because of the enclosing if. Without a base case, the recursion would run forever,

calling itself over and over.

Don’t try to trace the exact sequence of steps that the computer follows in a recursive program. Instead, imagine

that inside the computer there are many small people, and if Theresa is drawing a tree of size 100, depth 6, she

hires Tom to make a tree of size 70, depth 5, and later hires Theo to make a tree of size 60, depth 5. Tom in

turn hires Tammy and Tallulah, and so on. Each little person has his or her own local variables size and depth,

each with different values.

7

 You can also write recursive reporters, like this block to compute the factorial function:

Note the use of the report block. When a reporter block uses this block, the reporter finishes its work and

reports the value given; any further blocks in the script are not evaluated. Thus, the if else block in the script

above could have been just an if, with the second report block below it instead of inside it, and the result would

be the same, because when the first report is seen in the base case, that finishes the block invocation, and the

second report is ignored. There is also a stop block block that has a similar purpose, ending the block

invocation early, for command blocks. (By contrast, the stop script block stops not only the current block

invocation, but the entire toplevel script that called it.)

For more on recursion, see Thinking Recursively by Eric Roberts.

II. First Class Lists

A data type is “first class” in a programming language if data of that type can be

● the value of a variable

● an input to a procedure

● the value returned by a procedure

● a member of a data aggregate

● anonymous (not named)

In Scratch 1.4, numbers and text strings are first class. You can put a number in a variable, use one as the input to

a block, write a reporter that reports a number, or put a number into a list.

But Scratch’s lists are not first class. You create one using the “Make a list” button, which requires that you give

the list a name. You can’t put the list into a variable, into an input slot of a block, or into a list item—you can’t

have lists of lists. None of the Scratch reporters reports a list value. (You can use a reduction of the list into a text

string as input to other blocks, but this loses the list structure; the input is just a text string, not a data aggregate.)

A fundamental design principle in BYOB is that all data should be first class. If it’s in the language, then we

should be able to use it fully and freely. We believe that this principle avoids the need for many special-case tools,

which can instead be written by BYOB users themselves.

Note that it’s a data type that’s first class, not an individual value. Don’t think, for example, that lists made with

the list block described below are first class, while lists made with the “Make a list” button aren’t. In BYOB, lists

are first class, period.

8

A. The list block

At the heart of providing first-class lists is the ability to make an “anonymous” list—to make a list without

simultaneously giving it a name. The list reporter block does that.

At the right end of the block are two left-and-right arrowheads. Clicking on these changes the number of inputs to

list, i.e., the number of elements in the list you are building.

You can use this block as input to many other blocks:

Note that the Scratch list blocks use a dropdown menu with the names of all the “Make a list”-type lists. BYOB

retains this notation for compatibility, but you can drag any expression whose value is a list over the dropdown

menu:

9

B. Lists of lists

Lists can be inserted as elements in larger lists. We can easily create ad hoc structures as needed:

We can also build any classic computer science data structure out of lists of lists, by defining constructors,

selectors, and mutators as needed. Here we create binary trees with type-checking selectors; only one selector is

shown but the ones for left and right children are analogous.

III. Typed inputs

A. Scratch’s type notation

Scratch block inputs come in two types: Text-or-number type and Number type. The former is indicated by a

rectangular box, the latter by a rounded box:

A third Scratch type, Boolean (true/false), can be used in certain Control blocks with hexagonal slots.

The BYOB type system is an expanded version including Procedure, List, and Object types.

10

B. The BYOB Input Type dialog

In the input name dialog, there is a right-facing arrowhead after the “Input name” option:

Clicking that arrowhead opens the “long” input name dialog:

There are twelve input-type shapes, plus three mutually exclusive categories, listed in addition to the basic choice

between title text and an input name. The default type, the one you get if you don’t choose anything else, is

“Any,” meaning that this input slot is meant to accept any value of any type.

The arrangement of the input types is systematic. As the pictures on the next page show, each row of types is a

category, and parts of each column form a category. Understanding the arrangement will make it a little easier to

find the type you want.

11

The second row of input types contains the ones found in Scratch: Number, Any, and Boolean. (The reason

these are in the second row rather than the first will become clear when we look at the column arrangement.) The

first row contains the new BYOB types other than procedures: Object, Text, and List. The last two rows are the

types related to procedures, discussed more fully in section IV below.

The List type is used for first class lists, discussed in section II above. The red rectangles inside the input slot are

meant to resemble the appearance of lists as Scratch displays them on the stage: each element in a red rectangle.

The Object type is for first class sprites, discussed in section V below.

The Text type is really just a variant form of the Any type, using a shape that suggests a text input. In Scratch,

every block that takes a Text-type input has a default value that makes the rectangles for text wider than tall. The

blocks that aren’t specifically about text either are of Number type or have no default value, so those rectangles

are taller than wide. At first we thought that Text was a separate type that always had a wide input slot; it turns out

that this isn’t true in Scratch (delete the default text and the rectangle narrows), but we thought it a good idea

anyway, so we allow Text-shaped boxes even for empty input slots. (This is why Text comes above Any in the

input type selection box.)

12

Although the procedure types are discussed more fully later, they are the key to understanding the column

arrangement in the input types. Scratch has three block shapes: jigsaw-piece for command blocks, oval for

reporters, and hexagonal for predicates. (A predicate is a reporter that always reports True or False.) In BYOB

these blocks are first class data; an input to a block can be of Command type, Reporter type, or Predicate type.

Each of these types is directly below the type of value that that kind of block reports, except for Commands, which

don’t report a value at all. Thus, oval Reporters are related to the Any type, while hexagonal Predicates are

related to the Boolean (true or false) type.

The unevaluated procedure types in the fourth row are explained in section IV.D below. In one handwavy

sentence, they combine the meaning of the procedure types with the appearance of the reported value types two

rows higher. (Of course this isn’t quite right for the C-shaped command input type, since commands don’t report

values. But you’ll see later that it’s true in spirit.)

We now turn to the three mutually exclusive options that come below the type array.

The “Single input” option: In Scratch all inputs are in this category. There is one input slot in the block as it

appears in its palette. If a single input is of type Any, Number, or Text, then you can specify a default value that

will be shown in that slot in the palette, like the “10” in the move (10) steps block. In the prototype block at the

top of the script in the Block editor, an input with name “size” and default value 10 looks like this:

The “Multiple inputs” option: The list block introduced earlier accepts any number of inputs to specify the items

of the new list. To allow this, BYOB introduces the arrowhead notation (and) that expands and contracts

the block, adding and removing input slots. Custom blocks made by the BYOB user have that capability, too. If

you choose the “Multiple inputs” button, then arrowheads will appear after the input slot in the block. More or

fewer slots (as few as zero) may be used. When the block runs, all of the values in all of the slots for this input

name are collected into a list, and the value of the input as seen inside the script is that list of values:

The ellipsis (…) in the orange input slot name box in the prototype indicates a Multiple input.

13

The third category, “Make internal variable visible,” isn’t really an input at all, but rather a sort of output from the

block to its user. An upward-pointing arrow indicates this kind of input name in the prototype:

The variable i can be dragged from the for block into the blocks used in its C-shaped command slot. Also, by

clicking on the orange i, the user can change the name of the variable as seen in the script (although the name

hasn’t changed inside the block’s definition). This kind of variable is called an “upvar” for short, because it is

passed upward from the custom block to the script that uses it.

IV. Procedures as Data

A. Procedure input types

In the for block example above, the input named action has been declared as type “Command (C-shaped)”;

that’s why the finished block is C-shaped. But how does the block actually tell BYOB to carry out the commands

inside the C-slot? Here is a simple version of the block script:

This is simplified because it assumes, without checking, that the ending value is greater than the starting value; if

not, the block should (depending on the designer’s purposes) either not run at all, or change the variable by −1

instead of by 1.

The important part of this script is the run block near the end. This is a BYOB built-in block that takes a

Command-type value (a script) as its input, and carries out its instructions. There is a similar call block for

invoking a Reporter or Predicate block. The call and run blocks are at the heart of BYOB’s first class procedure

feature; they allow scripts and blocks to be used as data — in this example, as an input to a block — and eventually

carried out under control of the user’s program.

14

Here’s another example, this time using a Reporter-type input:

Here we are calling the Reporter “multiply by 10” three times, once with each item of the given list as its input,

and collecting the results as a list. (The reported list will always be the same length as the input list.) Note that the

multiplication block has two inputs, but here we have specified a particular value for one of them (10), so the call

block knows to use the input value given to it just to fill the other (empty) input slot in the multiplication block.

The call block (and also the run block) has a right arrowhead at the end; clicking on it adds the phrase “with

inputs” and then a slot into which an input can be inserted:

If the left arrowhead is used to remove the last input slot, the “with inputs” disappears also. The right arrowhead

can be clicked as many times as needed for the number of inputs required by the reporter block being called.

(You’ll have noticed that “with inputs” is presented in a way that suggests there’s an alternative, but we’ll come

back to that later.)

If the number of inputs given to call (not counting the Reporter-type input that comes first) is the same as the

number of empty input slots, then the empty slots are filled from left to right with the given input values. If call is

given exactly one input, then every empty input slot of the called block is filled with the same value:

An even more important thing to notice about these examples is the thick grey border around the blocks that

we’ve put in the Reporter-type input slots to call and map above. This notation, not seen in Scratch, indicates

that the block itself, not the number or other value that the block would report when called, is the input.

15

By contrast, inside the for and map scripts, we actually want to evaluate a block: the orange one that reports the

procedure’s input value:

How do we distinguish these two cases as we’re building scripts? There’s a long way and a short way. The long

way, to be described below, uses the the block and the script blocks. The short way uses the distance from the

input slot to control whether a Procedure-type input slot’s actual input block is evaluated, or is taken as the input

without evaluation. As you drag a block toward a Procedure-type input slot, you see first the usual Scratch white

halo around the input slot, then as you get closer, a white horizontal line inside the input slot and a grey halo

around the dragged block.

B. Writing Higher Order Procedures

A higher order procedure is one that takes another procedure as an input, or that reports a procedure. In this

document, the word “procedure” encompasses scripts, individual blocks, and nested reporters. (Unless specified

otherwise, “reporter” includes predicates. When the word is capitalized inside a sentence, it means specifically

oval-shaped blocks. So, “nested reporters” includes predicates, but “a Reporter-type input” doesn’t.)

Although an Any-type input slot (what you get if you use the small input-name dialog box) will accept a procedure

input, it won’t do the automatic grey-border input technique described above. So the declaration of Procedure-

type inputs makes the use of your custom block much more convenient.

Why would you want a block to take a procedure as input? This is actually not an obscure thing to do; the

Scratch conditional and looping blocks (the C-shaped ones in the Control palette) are taking a script as input.

Scratch users just don’t usually think about it in those terms! We could write the repeat block as a custom block

this way, if Scratch didn’t already have one:

The bracket [next to action in the prototype indicates that this is a C-shaped block, and that the script enclosed

by the C is the input named action in the body of the script. The only way to make sense of the variable action

is to understand that its value is a script.

16

To declare an input to be Procedure-type, open the input name dialog as usual, click on the arrow:

Then, in the long dialog, choose the appropriate Procedure type. The third row of input types has a grey slot in

the shape of each block type (jigsaw for Commands, oval for Reporters, and hexagonal for Predicates). In

practice, though, in the case of Commands it’s more common to choose the C-shaped slot on the fourth row,

because this “container” for command scripts is familiar to Scratch users. Technically the C-shaped slot is an

unevaluated procedure type, something discussed in section D below. The two Command-related input types are

connected by the fact that if a variable, an item (#) of [list] block, or a custom Reporter block is dropped onto a

C-shaped slot, it turns into an inline slot, as in the repeater block’s recursive call above. (Other built-in Reporters

can’t report scripts, so they aren’t accepted in a C-shaped slot.)

Why would you ever choose an inline Command slot rather than a C shape? Other than the run block discussed

below, the only case I can think of is something like the C/C++/Java for loop, which actually has three command

script inputs, only one of which is the “featured” loop body:

17

Okay, now that we have procedures as inputs to our blocks, how do we use them? We use the blocks run (for

commands) and call (for reporters). The run block’s script input is inline, not C-shaped, because we anticipate

that it will be rare to use a specific, literal script as the input. Instead, the input will generally be a variable whose

value is a script.

The run and call blocks have arrowheads at the end that can be used to open slots for inputs to the called

procedures. How does BYOB know where to use those inputs? If the called procedure (block or script) has

empty input slots, BYOB “does the right thing.” This has several possible meanings:

1. If the number of empty slots is exactly equal to the number of inputs provided, then BYOB fills the empty slots

from left to right:

2. If exactly one input is provided, BYOB will fill any number of empty slots with it:

3. Otherwise, BYOB won’t fill any slots, because the user’s intention is unclear.

If the user wants to override these rules, the solution is to use the block or the script with explicit input names

that can be put into the given block or script to indicate how inputs are to be used. This will be discussed more

fully below.

The text with inputs is in a dropdown menu that has one other choice: with input list. This variant is used

mainly when making a recursive call to a block that takes a variable number of inputs:

18

This block will take any number of numbers as inputs, and will make the sprite grow and shrink accordingly:

The user of this block calls it with any number of individual numbers as inputs. But inside the definition of the

block, all of those numbers form a list that has a single input name, numbers. This recursive definition first

checks to make sure there are any inputs at all. If so, it processes the first input (item 1 of the list), then it wants to

make a recursive call with all but the first number. (All but first of isn’t built into BYOB, but is in the tools

project distributed with BYOB.) But sizes doesn’t take a list as input; it takes numbers as inputs! So these would

be wrong:

The with input list option replaces the multiple Any-type input slots in the run block with one List-type slot:

The items in the list are taken individually as inputs to the script. Since numbers is a list of numbers, each

individual item is a number, just what sizes wants.

C. Procedures as Data

The grey borders we’ve been using around Procedure-type inputs up to now are actually an abbreviation for the

blocks the block and the script found in the Operators palette. The arrowheads in these blocks can be used to

give the inputs to a block or script explicit names, instead of using empty input slots as we’ve done until now.

19

There are two reasons why you might need the block or the script: Either you need more control over the use

of inputs to an encapsulated procedure (one being used as data), or you want to use a procedure as the value for

an input slot that is not declared to be of Procedure type (because other inputs are also meaningful in that

context). Those both sound abstract and confusing, so here are some examples. First, the need for finer control

over the use of input data:

This is the definition of a block that takes any number of lists, and reports the list of all possible combinations of

one item from each list. The important part for this discussion is that near the bottom there are two nested calls

to map, a higher order function that applies an input function to each item of an input list. In the inner block, the

function being mapped is adjoin, and that block takes two inputs. The second, the empty List-type slot, will get

its value in each call from an item of the inner map’s list input. But there is no way for the outer map to

communicate values to empty slots of the adjoin block. We must give an explicit name, newitem, to the value

that the outer map is giving to the inner one, then drag that variable into the adjoin block.

If that example is too confusing, here is a simpler but more contrived one:

Here we just want to put one of the inputs into two different slots. If we left all three slots empty, BYOB would

not fill any of them, because the number of inputs provided (2) would not match the number of empty slots.

20

By the way, once the called block provides names for its inputs, BYOB will not automatically fill empty slots, on

the theory that the user has taken control. In fact, that’s another reason you might want to name the inputs

explicitly: to stop BYOB from filling a slot that should really remain empty.

Here’s an example of the other situation in which a procedure must be explicitly marked as data:

Here, we are making a list of procedures. But the list block accepts inputs of any type, so its input slots are not

marked as Procedure type, so there is no option of dropping the block or script with an automatic grey border.

We must say explicitly that we want the block itself as the input, rather than whatever value would result from

evaluating the block.

Notice, by the way, that BYOB displays blocks and scripts in grey borders even if you used the block or

the script to create them.

The block and the script mark their input as data; the former takes (reporter) blocks and the latter takes scripts.

Both have right arrows that can be used to supply explicit names for expected inputs. Clicking the arrow exposes

an orange oval containing the default name #1 for the first such input, #2 for the second, and so on. These

default names can be changed to something more meaningful by clicking on the orange oval. (Don’t drag by

accident.) These variables can be dragged into the block or script being encapsulated. The names of the input

variables are called the formal parameters of the encapsulated procedure.

Besides the list block in the example above, other blocks into which you may want to put procedures are set (the

value of a variable to a procedure), say and think (to display a procedure to the user), and report (for a reporter

that reports a procedure):

When you are using the block to control the encapsulated block’s use of its inputs with variable names, be

careful not to put a grey border around the block itself, which would encapsulate the block instead of whatever

block you used as input to it:

Although unusual, it is possible that you’d want to make a list of blocks that includes the block. That’s why the

automatic grey border isn’t ruled out.

21

D. Special Forms

Scratch has an if else block that has two C-shaped command slots and chooses one or the other depending on a

Boolean test. Because Scratch doesn’t emphasize functional programming, it lacks a corresponding reporter

block to choose between two expressions. We could write one:

Our block works for these simple examples, but if we try to use it in writing a recursive operator, it’ll fail:

The problem is that when any Scratch block is called, all of its inputs are computed (evaluated) before the block

itself runs. The block itself only knows the values of its inputs, not what expressions were used to compute them.

In particular, all of the inputs to our if then else block are evaluated first thing. That means that even in the base

case, factorial will try to call itself recursively, causing an infinite loop. We need our if then else block to be

able to select only one of the two alternatives to be evaluated.

We have a mechanism to allow that: declare the then and else inputs to be of type Reporter rather than type

Any. Then, when calling the block, enclose those inputs in the block (or use the equivalent grey border notation)

so that the expressions themselves, rather than their values, become the inputs:

In this version, the program works, with no infinite loop. But we’ve paid a heavy price: this reporter-if is no

longer as intuitively obvious as the Scratch command-if. You have to know about procedures as data, about grey

borders, and about constant functions. (The id block implements the identity function, which reports its input.

We need it because the block only takes reporters as input, not numbers.) What we’d like is a reporter-if that

behaves like this one, delaying the evaluation of its inputs, but looks like our first version, which was easy to use

except that it didn’t work.

22

Such blocks are indeed possible. A block that seems to take a simple expression as input, but delays the

evaluation of that input by wrapping a hidden the block around it (and, if necessary, an id-like transformation of

constant data into constant functions) is called a special form. To turn our if block into a special form, we edit the

block’s prototype, declaring the inputs yes and no to be of type “Any (unevaluated)” instead of type Reporter.

The script for the block is still that of the second version, including the use of call to evaluate either yes or no but

not both. But the slots appear as white Any-type rectangles, not Reporter-type ovals, and the factorial block will

look like our first attempt.

In a special form’s prototype, the unevaluated input slot(s) are indicated by an asterisk next to the input name:

Special forms trade off implementor sophistication for user sophistication. That is, you have to understand all

about procedures as data to make sense of the special form implementation of if then else. But any Scratch

programmer can use if then else without thinking at all about how it works internally.

Special forms are actually not a new invention in BYOB. Many of Scratch’s conditional and looping blocks are

really special forms. The hexagonal input slot in the if block is a straightforward Boolean value, because the value

can be computed once, before the if block makes its decision about whether or not to run its action input. But

the forever if, repeat until, and wait until blocks’ inputs can’t be Booleans; they have to be of type “Boolean

(unevaluated),” so that Scratch can evaluate them over and over again. Since Scratch doesn’t have custom blocks,

it can afford to handwave away the distinction between evaluated and unevaluated Booleans, but BYOB can’t.

The pedagogic value of special forms is proven by the fact that no Scratcher ever notices that there’s anything

strange about the way in which the hexagonal inputs in the Control blocks are evaluated.

Also, the C-shaped slot familiar to Scratch users is an unevaluated procedure type; you don’t have to use the

script to keep the commands in the C-slot from being run before the C-shaped block is run. Those commands

themselves, not the result of running them, are the input to the C-shaped Control block. (This is taken for

granted by Scratch users, especially because Commands don’t report values, so it wouldn’t make sense to think of

putting commands in the C-shaped slot as a composition of functions.) This is why it makes sense that

“C-shaped” is on the fourth row of types in the long form input dialog.

23

V. Object Oriented Programming with Sprites

Object oriented programming is a style based around the abstraction object: a collection of data and methods

(procedures, which from our point of view are just more data) that you interact with by sending it a message (just a

name, maybe in the form of a text string, and perhaps additional inputs) to which it responds by carrying out a

method, which may or may not report a value back to the asker. Reasons for using OOP vary; some people

emphasize the data hiding aspect (because each object has local variables that other objects can access only by

sending messages to the owning object) while others emphasize the simulation aspect (in which each object

abstractly represents something in the world, and the interactions of objects in the program model real interactions

of real people or things). Data hiding is important for large multi-programmer industrial projects, but for BYOB

users it’s the simulation aspect that’s important. Our approach is therefore less restrictive than that of some other

OOP languages.

Technically, object oriented programming rests on three legs: (1) Message passing: There is a notation by which

any object can send a message to another object. (2) Local state: Each object can remember the important past

history of the computation it has performed. (“Important” means that it need not remember every message it has

handled, but only the lasting effects of those messages that will affect later computation.) (3) Inheritance: It would

be impractical if each individual object had to contain methods, many of them redundant, for all of the messages it

can accept. Instead, we need a way to say that this new object is just like that old object except for a few

differences, so that only those differences need be programmed explicitly.

A. First Class Sprites

Scratch comes with things that are natural objects: its sprites. Each sprite can own local variables; each sprite has

its own scripts (methods). A Scratch animation is plainly a simulation of the interaction of characters in a play.

There are three ways in which Scratch sprites are less versatile than the objects of an OOP language. First,

message passing is primitive in three respects: Messages can only be broadcast, not addressed to an individual

sprite; messages can’t take inputs; and methods can’t return values to their caller. Second, there is no inheritance

mechanism for sprites in Scratch. (You can duplicate a sprite, but the new sprite doesn’t follow any change in the

methods or state of the original.) Third, and most basic, in the OOP paradigm objects are data; they can be the

value of a variable, an element of a list, and so on.

BYOB sprites are first class data. They can be created and deleted by a script, stored in a variable or list, sent

messages individually, and inherit properties from another sprite. A sprite can be cloned, creating a new sprite

that shares methods, variables, and lists with its parent. As we’ll see in detail later, each property of the child can

individually be shared with, or separated from, the corresponding property of the parent.

The fundamental means by which programs get access to sprites is the object reporter block. It has a dropdown-
menu input slot that, when clicked, lists all the sprites, plus the stage (also an object, and the main reason why the
block isn’t named sprite), and special keywords “myself” and “all sprites”; the second of these reports a list of
sprites rather than a single object. An object reported by object can be used as input to any block that accepts
any input type, such as set. If you say an object, the resulting speech balloon will contain a smaller image of the
object’s costume or (for the stage) background.

24

B. Sending Messages to Sprites

The messages that a sprite accepts are the blocks in its palettes, including both all-sprites and this-sprite-only

blocks. (For custom blocks, the corresponding methods are the scripts as seen in the Block Editor.

Scratch provides a way for one sprite to get at certain attributes of another: the <var> of <sprite> block in the

Sensing palette. BYOB extends this block to allow access to any property of a sprite. The two input slots in that

block are dropdown menus for Scratch compatibility, but any object-valued expression can be dragged onto the

right one, and any block enclosed in the block or the script can be dragged onto the left one. The result can be
used with call or run to use the corresponding method.

Notice that the move block is ordinarily global; when used in a script, it moves whichever sprite runs the script.
But when combined with of, as in the picture above, the result is effectively a sprite-local block that always moves
Sprite2 regardless of which sprite runs it

As a convenience, BYOB includes a launch block that’s identical to run except that it calls the method as a

separate script, so the calling script can meanwhile do something else. Launch can be thought of as an improved

broadcast, while run of another sprite’s method is more analogous to broadcast and wait.

Although the picture above shows a block with its input slot filled, messages with empty input slots can also be

used, and can be given input values by call or run as usual.

C. Local State in Sprites: Variables and Attributes

A sprite’s memory of its own past history takes two main forms. It has variables, created explicitly by the user with

the “Make a variable” button; it also has attributes, the qualities every sprite has automatically, such as position,

direction, and pen color. Each variable can be examined using its own orange oval block; there is one set block
to modify all variables. Attributes have a less uniform programming interface in Scratch. A sprite’s direction can
be examined with the direction block, and modified with the point in direction <dir> block. It can also be
modified less directly using the blocks turn, point towards, and if on edge, bounce. There is no way for a
Scratch script to examine a sprite’s pen color, but there are blocks set pen color to <color>, set pen color to

<number>, and change pen color by <number> to modify it. A sprite’s name can be neither examined nor
modified by scripts; it can be modified by typing a new name directly into the box that displays the name, above
the scripting area. The block, if any, that examines a variable or attribute is called its getter; a block (there may be
more than one, as in the examples above) that modifies a variable or attribute is called a setter.

In certain contexts, as explained shortly, it is useful to distinguish between the value of a variable or attribute and
the variable or attribute as a thing in its own right. An example would be the distinction between “this sprite is
currently pointing toward the right” and “a sprite always has a direction, which is an angle measured clockwise
from north,” respectively. In BYOB, a variable or attribute is represented by its getter block. As a result, we
already have the means to express the distinction between the value and the thing-in-itself: for the latter, we put the

25

getter block inside a the block block. For example, the value reported by direction is a number, the sprite’s
current direction; but the value reported by the (direction) block is a block, the direction attribute itself.

Using the block to represent an attribute works only if there is a getter block for that attribute. We want to be
able to represent every component of the state of a sprite. Instead of adding dozens of getter blocks to the
palettes, BYOB introduces a single attribute block in the Sensing palette. Its dropdown-menu input has an entry
for every sprite attribute. The value reported by attribute (direction) is the same number reported by the
direction block in the Motion palette. The value reported by the (attribute (direction)) block is the direction
attribute itself. Similarly, attribute (draggable?) reports true if the sprite can be dragged in presentation mode
(that is, if the padlock icon near the top of the scripting area is unlocked); the (attribute (draggable?)) block
reports the sprite’s draggability attribute.

One benefit of BYOB’s first class blocks is that we don’t need an equivalent to attribute for setters. Instead, we
extend the set <variable> to <value> block, allowing an attribute (with the block) to be dragged onto the
dropdown list of variables: set (the (attribute (draggable?)) block) to <true>. Note that this works only for
variable and attribute getters, not for reporters in general! You can’t say set (the (sqrt of (x)) block) to 5 to set
the variable x to 25.

D. Prototyping: Parents and Children

Most current OOP languages use a class/instance approach to creating objects. A class is a particular kind of

object, and an instance is an actual object of that type. For example, there might be a Dog class, and several

instances Fido, Spot, and Runt. The class typically specifies the methods shared by all dogs (RollOver,

SitUpAndBeg, Fetch, and so on), and the instances contain data such as species, color, and friendliness. BYOB

uses a different approach called prototyping, in which there is no distinction between classes and instances.

Prototyping is better suited to an experimental, tinkering style of work: You make a single dog sprite, with both

methods (blocks) and data (variables and lists), and when you like it, you use it as the prototype from which to

clone other dogs. If you later discover a bug in the behavior of dogs, you can edit a method in the parent, and all

of the children will automatically share the new version of the method block. Experienced class/instance

programmers may find prototyping strange at first, but it is actually a more expressive system, because you can

easily simulate a class by hiding the prototype sprite! Prototyping is also a better fit with the Scratch design

principle that everything in a project should be concrete and visible on the stage; in class/instance OOP the

programming process begins with an abstract, invisible entity, the class, that must be designed before any concrete

objects can be made.

26

There are three ways to make a child sprite. First, if you control-click or right-click on a sprite in the “sprite

corral” at the bottom right corner of the window, you get a menu that includes “clone” as one of the choices.

Second, there is a clone block in the Operators palette that creates and reports a child sprite. Third, sprites have
a “parent” attribute that can be set, like any attribute, thereby changing the parent of an existing sprite.

In projects that create clones, the total number of sprites may be very large, and several of them may look
identical, making it hard to discover which of them is the prototype for the others. Control-clicking or right-
clicking on the stage icon in the sprite corral displays a menu containing icons and names of only those sprites
without parents. Clicking on a sprite selects it and, if it has children, displays a menu of those children. (Some of

those may themselves have children, which can be displayed by the same technique.)

E. Inheritance by Delegation

A clone inherits properties of its parent. “Properties” include scripts, custom blocks, variables, named lists,
system attributes, costumes, and sounds. Each individual property can be shared between parent and child, or not
shared (with a separate one in the child). The getter block for a shared property, in the child’s palette, is displayed
in a lighter color; separate properties of the child are displayed in the traditional colors.

When a new clone is created, by default it shares all its properties with its parent except for system attributes. If
the value of a shared property is changed in the parent, then the children see the new value. If the value of a
shared property is changed in the child, then the sharing link is broken, and a new private version is created in
that child. (This is the mechanism by which a child chooses not to share a property with its parent.) “Changed”
in this context means using the set or change block for a variable, editing a block in the Block Editor, editing a
costume or sound, or inserting, deleting, or reordering costumes or sounds. To change a property from unshared
to shared, the child deletes its private version, using the delete command block. This block has an input slot that
will accept a sprite or any property of a sprite (as represented by its getter block). Its input slot is of type Reporter,
so you can use the grey-border notation for a block input. This can be used instead of the “Delete a variable”
button in Scratch. Note however that sprites themselves aren’t properties, so don’t grey-border a sprite.

27

When a sprite gets a message for which it doesn’t have a corresponding block, the message is delegated to that
sprite’s parent. When a sprite does have the corresponding block, then the message is not delegated. If the script
that implements a delegated message refers to object (myself), it means the child to which the message was
originally sent, not the parent to which the message was delegated.

F. Nesting Sprites: Anchors and Parts

Sometimes it’s desirable to make a sort of “super-sprite” composed of pieces that can move together but can also

be separately articulated. The classic example is a person’s body made up of a torso, limbs, and a head. BYOB

allows one sprite to be designated as the anchor of the combined shape, with other sprites as its parts. This is

another form of connection among sprites, separate from the parent/child connection. Sprite nesting can be set

up both interactively and from a script. To do it interactively, drag the sprite corral icon of a part sprite onto the

stage display (not the sprite corral icon!) of the desired anchor sprite. In a script, a sprite’s “anchor” attribute can

be set like any other attribute.

Sprite nesting is shown in the sprite corral icons of both anchors and parts:

In this illustration, it is desired to animate Alonzo’s arm. (The arm has been colored green in this picture to make

the relationship of the two sprites clearer, but in a real project they’d be the same color, probably.) Sprite1,

representing Alonzo’s body, is the anchor; Sprite2 is the arm. The icon for the anchor shows small images of up

to three attached parts at the bottom. The icon for each part shows a small image of the anchor in its top left

corner, and a synchronous rotation flag in the top right corner. In its initial setting, as shown above, it means that

the when the anchor sprite rotates, the part sprite also rotates as well as revolving around the anchor. When

clicked, it changes from a circle to a dot, and indicates that when the anchor sprite rotates, the part sprite revolves

around it, but does not rotate, keeping its original orientation. (The part can also be rotated separately, using its

turn blocks.) Any change in the position or size of the anchor is always extended to its parts.

G. List of attributes

At the right is a picture of the dtopdown menu of attributes in the attribute block. Four of these

are not real attributes, but rather lists of things related to attributes:

 costumes: a list of the names of the sprite’s costumes

 sounds: a list of the names of the sprite’s sounds

 children: a list of sprites whose parent attribute is this sprite

 parts: a list of sprites whose anchor attribute is this sprite

Most of the others should be clear because their names match Sprite getter or setter blocks, except

for a few that Scratch controls only through the GUI: draggable? is true if the padlock is open;

rotation style is a number from 1 to 3 corresponding to the column of three small buttons near

the padlock; synchronous? is true for an anchored sprite if it rotates when it revolves.

28

VI. Building Objects Explicitly

The idea of object oriented programming is often taught in a way that makes it seem as if a special object oriented

programming language is necessary. In fact, any language with first class procedures allows objects to be

implemented explicitly; this is a useful exercise to help demystify objects.

The central idea of this implementation is that an object is represented as a dispatch procedure that takes a

message as input and reports the corresponding method. In this section we start with a stripped-down example to

show how local state can work, and build up to full implementations of both class/instance and prototyping OOP.

A. Local State with Script Variables

This script implements an object class, a type of object, namely the counter class. In this first simplified version

there is only one method, so no explicit message-passing is necessary. When the make a counter block is called,

it reports a procedure, created by the the script block inside its body. That procedure implements a specific

counter object, an instance of the counter class. When invoked, a counter instance increases and reports its

count variable. Each counter has its own local count:

This example will repay careful study, because it isn’t obvious why each instance has a separate count. From the

point of view of the make a counter procedure, each invocation causes a new, block-associated count variable to

be created. Usually such “block variables” are temporary, going out of existence when the procedure ends. But

this one is special, because the procedure returns another procedure that makes reference to the count variable,

so it remains active. (The script variables block makes variables local to a script. It can be used in a sprite’s

script area or in the Block Editor. Script variables can’t be dragged outside the script in which they are created,

but they can be “exported” indirectly by being used in a reported procedure, as here.)

In this approach to OOP we are representing both classes and instances as procedures. The make a counter

block represents the class, while each instance is represented by a nameless script created each time make a

29

counter is called. The script variables created inside the make a counter block but outside the the script block

are instance variables, belonging to a particular counter.

B. Messages and Dispatch Procedures

In the simplified class above, there is only one method, and so there are no messages; you just call the instance to

carry out its one method. Here is a more detailed version that uses message passing:

Again, the make a counter block represents the counter class, and again the script creates a local variable count

each time it is invoked. The large outer the script block represents an instance. It is a dispatch procedure: it

takes a message (just a text word) as input, and it reports a method. The two smaller the script blocks are the

methods. The top one is the next method; the bottom one is the reset method. The latter requires an input,

named value.

In the earlier version, calling the instance did the entire job. In this version, calling the instance gives access to a

method, which must then be called to finish the job. We can provide a block to do both procedure calls in one:

The ask block has two required inputs: an object and a message. It also accepts optional additional inputs, which

BYOB puts in a list; that list is named args inside the block. The block has two nested call blocks. The inner

one calls the object, i.e., the dispatch procedure. The dispatch procedure always takes exactly one input, namely

the message. It reports a method, which may take any number of inputs; note that this is the situation in which we

need the “with input list” option of call.

30

C. Inheritance via Delegation

So, our objects now have local state variables and message passing. What about inheritance? We can provide

that capability using the technique of delegation. Each instance of the child class contains an instance of the

parent class, and simply passes on the messages it doesn’t want to specialize:

This script implements the buzzer class, which is a child of counter. Instead of having a count (a number) as a

local state variable, each buzzer has a counter (an object) as a local state variable. The class specializes the next

method, reporting what the counter reports unless that result is divisible by 7, in which case it reports “buzz.” If

the message is anything other than next, though, then the buzzer simply invokes its counter’s dispatch procedure.

So the counter handles any message that the buzzer doesn’t handle explicitly.

D. An Implementation of Prototyping OOP

In the class/instance system above, it is necessary to design the complete behavior of a class before you can make

any instances of the class. This is great for top-down design, but not great for experimentation. Here we sketch

the implementation of a prototyping OOP system modeled after the behavior of BYOB sprites: children share

properties of their parent unless and until a child changes a property, at which point the child gets a private copy.

Since these explicitly constructed objects aren’t sprites, they don’t have system attributes; their properties consist

of methods and local variables.

Because we want to be able to create and delete properties dynamically, we don’t use BYOB variables to hold an

object’s variables or methods. Instead, each object has two tables, called methods and data, each of which is an

association list, a list of two-item lists, in which each of the latter contains a key and a correspoinding value. We

provide a lookup procedure to locate the key-value pair corresponding to a given key in a given table.

31

There are also commands to insert and delete entries:

As in the class/instance version, an object is represented as a dispatch procedure that takes a message as its input

and reports the corresponding method. When an object gets a message, it will first look for that keyword in its

methods table. If it’s found, the corresponding value is the method we want. If not, the object looks in its data

table. If a value is found there, what the object returns is not that value, but rather a reporter method that, when

called, will report the value. This means that what an object returns is always a method.

If the object has neither a method nor a datum with the desired name, but it does have a parent, then the parent

(that is, the parent’s dispatch procedure) is invoked with the message as its input. Eventually, either a match is

found, or an object with no parent is found; the latter case is an error, meaning that the user has sent the object a

message not in its repertoire.

Methods can take any number of inputs, as in the class/instance system, but in the prototyping implementation

every method automatically gets the object to which the message was originally sent as its first input. We must do

this so that if a method is found in the parent (or grandparent, etc.) of the original recipient, and that method

refers to a variable or method, it will use the child’s variable or method if the child has its own version.

The clone of block below takes an object as its input and makes a child object. It should be considered as an

internal part of the implementation; the preferred way to make a child of an object is to send that object a clone

message.

32

33

Every object is created with predefined methods for set, method, delete-var, delete-method, and clone. It has

one predefined variable, parent. Objects without a parent are created by calling new object:

As before, we provide procedures to call an object’s dispatch procedure and then call the method. But in this

version we provide the desired object as the first method input:

The script on the next page demonstrates how this prototyping system can be used to make counters. We start

with one prototype counter, called counter1. We count this counter up a few times, then create a child

counter2 and give it its own count variable, but not its own total variable. The next method always sets

counter1’s total variable, which therefore keeps count of the total number of times that any counter is

incremented. Running this script should [say] and (think) the following lists:

[1 1] [2 2] [3 3] [4 4] (1 5) (2 6) (3 7) [5 8] [6 9] [7 10] [8 11]

34

35

VII. Miscellaneous features

BYOB 3 also introduces a few blocks that aren’t about first class lists or procedures:

These blocks, one for commands and one for reporters, can be inserted into a script to begin true single stepping,

opening a debugging window in which each step is displayed along with the opportunity to examine variables, step

into the next block, step “over” the next block (not single stepping until it finishes), or continue normal evaluation.

These blocks report the constant values true and false, getting around the need to use text strings as Boolean

values.

This block is used to check the type of any value. The dropdown lists all the available types: number, text,

Boolean, list, command, reporter, predicate. Any value has exactly one of these types.

These blocks convert between single-character text strings (the character can be a letter, digit, or punctuation mark

even though the block name says “letter”) and numeric codes used to represent the characters internally (the

ASCII code). They’re useful, for example, when you want to use a character to index into a list of values; if you

have a list containing the words “Alpha,” “Bravo,” “Charlie,” “Delta,” and so on, you can turn a letter of the

alphabet into the corresponding word by taking the ASCII for that letter minus the ASCII for “A,” plus 1.

This block takes a list and reports its value as a text string. It is provided for compatibility with Scratch 1.4

projects; the Scratch list block reports the contents of a list as a single text string with all the items concatenated.

When reading a Scratch project, BYOB replaces any list block in a script with this block.

The copy of block makes a new list containing the same items as the input list, more quickly than copying

elements one by one. This block does not make copies of any sublists (lists that are items of the overall list); the

same sublist appears in the original input and in the copy, so changing an item of a sublist in one of these lists

affects the other.

36

The script variables block can be used in any script, whether in a sprite’s script area or in the Block Editor. It

creates one or more variables that are local to that script; they can be used as temporary storage during the

running of the script, or may become permanent (but still only usable within the body of the script) if the script

reports a procedure that makes reference to them. For scripting area blocks, this is a new capability; for the Block

Editor it’s an alternative to the former Make a Variable button inside the Block Editor.

37

<

<var> of <sprite> · 24

A

anonymous list · 8
Any (unevaluated) type · 22
Any type · 10
arrow, upward-pointing · 13
arrowheads · 8, 12
as ascii · 35
as text · 35
ascii code of · 35
ask block · 29
association list · 30
atomic · 6
attribute · 24
attributes, list of · 27

B

base case · 6
binary tree · 9
Block Editor · 4, 5
block shapes · 4, 12
block, making a · 3
blocks, color of · 3
Boolean (unevaluated) type · 22
bracket · 15
broadcast · 23
broadcast and wait · 24

C

call · 13, 17
child class · 30
circle-plus signs · 5
class · 28
class/instance · 25
clone of block · 31
color of blocks · 3
constant functions · 21
copy of · 35
counter class · 28
crossproduct · 19
C-shaped block · 15
C-shaped slot · 22

D

data hiding · 23

data structure · 9
data types · 9
debug · 35
default value · 12
delegation · 30
design principle · 7, 25
dialog, input name · 5
dispatch procedure · 28, 29, 31
dropdown menu · 8

E

ellipsis · 12
empty input slots, filling · 14, 17, 20
encapsulation of procedures · 19
ESC key · 6

F

factorial · 7, 21
false · 35
first class data type · 7
for block · 13

G

getter · 24
grey border · 15, 19
grey halo · 15

H

hat block · 4
hexagonal blocks · 4, 12
higher order function · 19
higher order procedure · 15

I

id block · 21
identity function · 21
if else · 21
inheritance · 23, 30
input name dialog · 5, 10
input-type shapes · 10
instance · 28
internal variable · 13
is a · 35

38

J

jigsaw-piece blocks · 4, 12

K

key-value pair · 30

L

launch · 24
list · 8
list of procedures · 20
List type · 11
lists of lists · 9
local state · 23
long input name dialog · 10

M

Make a block · 3
Make a list · 7
make internal variable visible · 13
map · 14
menu · 8
menus of blocks · 3
message · 23
message passing · 23, 29
method · 23, 29
Multiple inputs · 12

N

nested calls · 19
Number type · 11

O

object block · 23
object oriented programming · 23, 28
Object type · 11
objects, building explicitly · 28
of · 24
oval blocks · 4, 12

P

palette · 3
parent class · 30
plus signs · 5
procedure · 15

prototype · 4
prototyping · 25, 30

R

recursion · 6
recursive operator · 21
repeat block · 15
report block · 7
reporters, recursive · 7
run · 13, 17

S

script variables · 28, 36
setter · 24
shapes of blocks · 4
simulation · 23
Single input · 12
special form · 21, 22
sprites · 23
square bracket · 15
stage · 23
stop block block · 7

T

Text type · 11
the block · 17, 20
the block block · 25
the script · 17, 20
Thinking Recursively · 7
title text · 5
true · 35

U

unevaluated procedure types · 12
upvar · 13
upward-pointing arrow · 13

V

variable · 24
variable number of inputs · 17

W

with input list · 18, 29
with inputs · 14

